
WikiCentral Home > WPS > Scripting BFM and HTM

Published on Apr 05, 2008

Scripting BFM and HTM
The Business Flow Manager (BPEL) and Human Task Manager APIs can be scripted. Scripting means invoking the APIs from a
scripted language such as Jython without having to code and compile Java code. This can be used for quick tests or even for more
advanced administration functions where programs may not be needed.

Both the BFM and HTM expose themselves as EJBs. In order for a scripting client to call an EJB, it needs to run in a suitable
environment. The wsadmin command provides just such an environment.

The following can be used to start the appropriate wsadmin environment:

BPE
wsadmin -lang jython -wsadmin_classpath <WPSROOT>/ProcessChoreographer/client/bpe137650.jar

HTM
wsadmin -lang jython -wsadmin_classpath <WPSROOT>/ProcessChoreographer/client/task137650.jar

A common start to a Jython program looks like:

from javax.naming import InitialContext

context = InitialContext()
home = context.lookup("com/ibm/bpe/api/BusinessFlowManagerHome")
bfm = home.create()

List of samples:

Starting a process

Creating and Starting a Human Task

Querying the tables

Deleteing & Terminating Human Tasks

Delete Finished Processes

Find Stopped Activities

Force retry of Stopped Activities

Getting the graphics (SVG) for a process

Getting a list of Invocation Tasks

Starting a process
Here is a script for starting a simple process called P1 with a String parameter called input1. To work with Business Objects in a
script, the directory containing the WSDL/XSDs must be added to the wsadmin classpath.

from javax.naming import InitialContext

context = InitialContext()
home = context.lookup("com/ibm/bpe/api/BusinessFlowManagerHome")
bfm = home.create()

template = bfm.getProcessTemplate("P1")

input = bfm.createMessage(template.getID(), template.getInputMessageTypeName());
dataObject = input.getObject()
dataObject.setString("input1", "hello")

piid = bfm.initiate(template.getName(), None, input)

Creating and Starting a Human Task
The following shows a script that can be used to create an instance of a Human Task. The task is called {http://m1 }HT1 and has an
input called input1 that is a string.

WPS
Scripting BFM and HTM

Scripting BFM and HTM - WPS - WCv2 http://w3.tap.ibm.com/w3ki2/display/WPS/Scripting+BFM+and+HTM

1 of 4 7/8/2008 10:57 AM

from javax.naming import InitialContext

context = InitialContext()
home = context.lookup("com/ibm/task/api/HumanTaskManagerHome")
htm = home.create()

tkiid = htm.createTask("HT1","http://m1")

cow = htm.createInputMessage(tkiid)
dataObject = cow.getObject()
dataObject.setString("input1", "hello")

htm.startTask(tkiid, cow, None)

Querying the tables
The following script queries the existing tasks and displays their Task IDs.

from javax.naming import InitialContext

context = InitialContext()
home = context.lookup("com/ibm/task/api/HumanTaskManagerHome")
htm = home.create()

select='DISTINCT TASK.TKIID'
where=None

resultSet = htm.query(select, where, None, None, None)
print resultSet
print resultSet.size()

hasMore = resultSet.first()
while hasMore:
 tkiid = resultSet.getOID(1)
 print tkiid
 hasMore = resultSet.next()

Deleteing & Terminating Human Tasks
from javax.naming import InitialContext

context = InitialContext()
home = context.lookup("com/ibm/task/api/HumanTaskManagerHome")
htm = home.create()

select='DISTINCT TASK.TKIID'
where='TASK.STATE = TASK.STATE.STATE_READY'

resultSet = htm.query(select, where, None, None, None)

hasMore = resultSet.first()
while hasMore:
 tkiid = resultSet.getOID(1)
 print tkiid
 htm.terminate(tkiid)
 hasMore = resultSet.next()

Deleteing Finished Processes
from javax.naming import InitialContext

context = InitialContext()
home = context.lookup("com/ibm/bpe/api/BusinessFlowManagerHome")
bfm = home.create()

select='DISTINCT PROCESS_INSTANCE.PIID'
where='PROCESS_INSTANCE.STATE = PROCESS_INSTANCE.STATE.STATE_FINISHED'

resultSet = bfm.query(select, where, None, None, None)

hasMore = resultSet.first()
while hasMore:
 piid = resultSet.getOID(1)
 print piid
 bfm.delete(piid)
 hasMore = resultSet.next()

Finding Stopped Activities
In a BPEL process, Activities can be flagged to stop on error. These activities then enter the Stopped state and can be located with a
query.

Scripting BFM and HTM - WPS - WCv2 http://w3.tap.ibm.com/w3ki2/display/WPS/Scripting+BFM+and+HTM

2 of 4 7/8/2008 10:57 AM

from javax.naming import InitialContext

context = InitialContext()
home = context.lookup("com/ibm/bpe/api/BusinessFlowManagerHome")
bfm = home.create()

select='DISTINCT ACTIVITY.AIID'
where='ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED'

resultSet = bfm.query(select, where, None, None, None)

hasMore = resultSet.first()
while hasMore:
 aiid = resultSet.getOID(1)

 activityInstanceData = bfm.getActivityInstance(aiid)
 print '-----'
 print 'Process Instance ID: ', activityInstanceData.getProcessInstanceID()
 print 'Activity Instance ID: ', activityInstanceData.getID()
 print 'Name: ', activityInstanceData.getName()
 print 'Process TemplateName: ', activityInstanceData.getProcessTemplateName()

 hasMore = resultSet.next()

Force retry of Stopped Activities
When a BPEL activity has been stopped, it can be restarted with the forceRerty method. It can also be skipped with the
forceComplete method.

from javax.naming import InitialContext

context = InitialContext()
home = context.lookup("com/ibm/bpe/api/BusinessFlowManagerHome")
bfm = home.create()

select='DISTINCT ACTIVITY.AIID'
where='ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED'

resultSet = bfm.query(select, where, None, None, None)

hasMore = resultSet.first()
while hasMore:
 aiid = resultSet.getOID(1)

 continueOnError = 0
 bfm.forceRetry(aiid, continueOnError)

 hasMore = resultSet.next()

Getting the graphics (SVG) for a process
The Business Flow Manager provides a method called getGraphics() that returns an XML document that describes an SVG image of
the BPEL process template. The following example illustrates retrieving this graphics and saving to a file which can then be opened in
an SVG editor/viewer

from javax.naming import InitialContext
from java.io import FileOutputStream

context = InitialContext()
home = context.lookup("com/ibm/bpe/api/BusinessFlowManagerHome")
bfm = home.create()
templateName = "TemplateName"
data = bfm.getGraphics(templateName)
fios = FileOutputStream("C:\\file.svg")
fios.write(data)
fios.close()

Getting a list of Invocation Tasks
An Invocation Task is one which when created, causes a process or SCA component to be started. In order to launch an invocation
Task, you may need to find the list of Task Templates that can be launched. The following script illustrates how to obtain these:

from javax.naming import InitialContext

context = InitialContext()
home = context.lookup("com/ibm/task/api/HumanTaskManagerHome")
htm = home.create()

taskTemplateArray = htm.queryTaskTemplates('TASK_TEMPL.KIND=TASK_TEMPL.KIND.KIND_ORIGINATING', None, None, None)
for x in taskTemplateArray:
 print '----'
 print 'Name:', x.getName(), 'Kind:', x.getKind()

Scripting BFM and HTM - WPS - WCv2 http://w3.tap.ibm.com/w3ki2/display/WPS/Scripting+BFM+and+HTM

3 of 4 7/8/2008 10:57 AM

Labels: (None)

See Also:
Human Task Manager Programming

Business Flow Manager Programming

Jython - The Jython/Python programming language

BFM and HTM Queries - Querying BFM and HTM.

Added by Neil Kolban , last edited by Neil Kolban on Apr 05, 2008 (view change) SHOW COMMENT

Info

 0 comments

Scripting BFM and HTM - WPS - WCv2 http://w3.tap.ibm.com/w3ki2/display/WPS/Scripting+BFM+and+HTM

4 of 4 7/8/2008 10:57 AM

